- **EEG stands for**: electro-encephalo-graphy. It is recording the electrical activity of the brain generated by pyramidal cells of the cortex.

- **EEG is classified to:**

 - **Spontaneous**: this refers to normal activity of the brain (when there is no stimulation) which is detected as soon as we place electrodes.
 - In spontaneous EEG, a lot of electrodes are placed on the head of the patient → so signals are recorded from everywhere (if there is a focal area with abnormal electrical activity → it will be detected).

 - **Evoked**: in which the examiner/doctor is stimulating the generation of a specific signal.
 - **Example**: evoked EEG is important to test for hearing → providing a sound to the patient → and if he hears it you ask him to press on a button → until you reach the threshold of hearing (you check the threshold of the patient).

- The patient is also asked to close his eyes (so the occipital lobe will not be functioning and thus alpha waves of the brain will be detected by occipital electrodes → then you ask the patient to open his eyes → therefore, you will know if there is synchronization or desynchronization of waves.

- **Routine EEG recording**: disc electrodes are applied according to 10-20 system of electrode placement (recording continues for 20 minutes).

- **Strength and advantages of EEG**:

 - Supplement neuro-imaging studies.
 - Providing direct evidence of epileptic abnormality.
 - Only test to show abnormalities in epileptic patients.
 - Low cost.
 - Low morbidity.
 - Readily repeatable.
 - Portable.

- **The signal recorded by EEG is very tiny** → measured in µV (so it must be augmented and therefore a lot of artifacts will appear).
- **EEG is used for (memorize 3-4 points for the exam):**
 - Sleep disorders (polysomnography).
 - Cortical depression (when the cortex is depressed → the detected waves will have low frequency and big amplitude “delta waves”).
 - Intracranial hemorrhage: no waves will be detected at the side where hemorrhage exist.
 - Focal cortical lesion.
 - Generalized epilepsy.
 - Focal epilepsy.
 - Following the health of the fetus during difficult delivery: slow electrical activity of the brain of the fetus indicates anoxia of the brain and thus the route of delivery will be shifted to cesarean.
 - Brain death → it is diagnosed mainly by evoked EEG.
 - Follow up of patients in emergency rooms, and operating theaters.

- **Notice that in identical twins → electrical activity of the brain might be similar.**

- **Usually in epilepsy** → EEG is normal unless you are recording during the attack or there are interictal spikes or focal epilepsy.

- **Activation procedures:** in which we induce weakness of electrical activity in a known epileptic patient who shows negative EEG:
 - **Routine:**
 - Eye opening and closure.
 - Intermittent photic stimulation.
 - Hyperventilation (for 2 minutes): which will cause washout of CO₂ (notice that carbon dioxide is important for cerebral vasodilatation and when it is washed out the blood flow to the brain will be decreased).
 - **Optional:**
 - Sleep deprivation.
 - Sedated sleep.
 - Withdrawal of antiepileptic drugs.
 - Video games or visual patterns.

- **The image shows waves appearing during different states of alertness and sleep (this comes as a matching question in OSPE exam):**
 - **When a person is awake** → beta waves.
 - **When a person becomes drowsy** → alpha waves appear.
 - **1st degree sleep** → theta waves.
 - **2nd degree sleep** → characterized by the presence of sleep spindles and K-complexes.
 - **Deep sleep** → delta waves.
 - **REM-sleep (not shown in the image):** similar to waves appearing in awake state but characterized by the presence of saw-tooth waves.

- **Absence seizure:** it is a type of generalized seizure in which the EEG is characterized by “domes and spikes” or “slow waves and spikes” at a frequency of 3/sec.
How to read an EEG?

- **Letters**: each letter is corresponding to an area in the brain:
 - PF: prefrontal.
 - F: frontal.
 - P: parietal.
 - O: occipital.
 - T: temporal.
 - C: central.
- **Numbers**:
 - Odd number: left side of the brain.
 - Even number: right side of the brain.

Hypsarrhythmia: there is no rhythm for the electrical activity of the brain (irregular rhythm).

How to put the electrodes (oral station in OSPE exam):

- **There are 3 electrodes**:
 - Ground: it is placed on the ear (away from the brain).
 - Black and white electrodes: they are placed on both sides of the occipital bone (these are the recording electrodes).

To treat epilepsy → there is an option of surgical excision of the temporal lobe → but if excised temporal lobe is in the dominant area of the brain → there will be a risk of losing the speech center.

How to investigate the language-dominant hemisphere?

- **Functional MRI**: in which the patient is asked to speak → and the doctor observe where the blood flow is going.
- **Wada test (there will be a question about this test in MCQ)**: you anesthetize half of the patient’s brain and you check if he can talk or not.

Craniotomy and electrodes:

- You place number of electrodes over the brain surface of the patient after you remove his skull → you ask the patient to say his name and you stimulate each electrode at every he says his name until an interruption appears → this indicates that the speech center of the patient is under that specific electrode.