What are mutations?
- They are changes in the genetic material resulting in abnormal phenotypes. They can occur at a specific gene (part of a chromosome) or involve a whole chromosome! Notice that most of mutations are harmful.

There are two types of mutations:

<table>
<thead>
<tr>
<th>Somatic</th>
<th>Gonadal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic alterations acquired by cells after the formation of the zygote.</td>
<td>Genetic alterations acquired by germ cells.</td>
</tr>
<tr>
<td>They are not transmitted to offspring (not inherited).</td>
<td>They are transmitted to offspring (inherited).</td>
</tr>
</tbody>
</table>

Mutations can be spontaneous or induced:
- Spontaneous mutations (most common): occurring naturally in the absence of mutagens (agents which cause mutations).
- Induced mutations: occurring due to exposure to mutagens:
 - Chemicals:
 - Base analogs: derivatives of normal bases incorporated in the DNA, substitute for normal nucleotide and alter base pairing properties.
 - Intercalating agents: can be inserted between bases in the DNA, resulting in structural changes of the DNA
 - Base modifiers: change the structure of DNA bases resulting in mismatch pairing (e.g. metals or Reactive Oxygen Species).
 - Radiation: X-ray (causing breaks in double stranded DNA) or UV-light (causing cross link of thymidine).

Gene mutations:
- Single base substitution:
 - Substitution of a single nucleotide with a different one:
 - Transition: substitution of one base with a different base of the same chemical category (i.e. purine to purine or pyrimidine to pyrimidine).
 - Transversion: substitution of one base with a different base of other chemical category (i.e. purine to pyrimidine or pyrimidine to purine).
 - Types of mutations which can result:
 - Missense mutation: translation of a different amino acid. Example include: galactosemia and sickle cell disease (valine instead of glutamic acid in the 6th amino acid position of β-globin chain).
 - Nonsense mutation: resulting in a stop codon (UAG or UGA or UAA). Example: β-thalassemia.
 - Silent mutation: doesn’t cause any changes in amino acid sequence.
• **Insertions or deletions:**
 ✓ Extra base pairs might be added (insertion) or removed (deletion) from the DNA sequence of a gene and this can result in what is known as “frameshift mutation”.

![Diagram showing DNA and mRNA sequences with insertions and deletions](image)

• **Triplet repeat expansion:**
 ✓ DNA mutation caused by expansion of a DNA sequence by the addition of trinucleotides resulting in a trinucleotide repeat.
 ✓ Example: Huntington’s disease in which there is excessive repeat of the trinucleotide CAG → adding series of glutamine to the resulting protein.

- **Chromosomal mutations:**
 • **Structural:**
 ✓ Deletion: a segment of the chromosome breaks-off and will be lost.
 ✓ Inversion: a segment of the chromosome breaks-off → flips 180 degrees and then reattaches.
 ✓ Duplication: extra copy of a part of the chromosome is formed.
 ✓ Translocation.
 • **Numerical (aneuploidy):** trisomies are considered as an example.

- **Functional effect of mutations:**
 • Loss of function: reduced activity of the gene product; associated with recessive mutations.
 • Gain of function: confer a new function of gene product; associate with dominant mutations.

- **What are the methods which can be used to detect mutations?**
 • Direct PCR.
 • Real-time PCR.
 • RFLP.
 • Hybridization.
 • DNA sequencing.