- **CD4+ functions:**
 - **Macrophage activation** → intracellular parasite killing.
 - **NK cell activation** → killing virus-infected cells and tumor cells.
 - **B-lymphocyte response** → leading to the production of antibodies.
 - **Activating cytotoxic T-cells by secreting IL-2** → this will lead to the killing of virus-infected cells and tumor cells.

- **B and T lymphocyte interaction with antigen:**
 - **B-cell receptors** will interact with the antigen in its native form (the normal tertiary structure).
 - **T-Cell-Receptors (TCR)** will interact with small peptides presented on MHC molecules carried on antigen presenting cell (antigen will be internalized and processed by APC to small peptides).

- **Restriction of T-cell interaction:**
 - **CD8** → they will interact with antigens presented on MHC class-I molecules carried by all nucleated cells in the body including platelets.
 - **CD4** → they will interact with antigens presented on MHC class-II molecules carried by antigen presenting cells (macrophages, B-lymphocytes and dendritic cells).

- **MHC molecules:**
 - **MHC-I** → it will present intracellular antigens (viruses and tumors). It will be recognized by CD8 cytotoxic T-cells which will kill the infected cells.
 - **MHC-II** → it will present extracellular antigens (ex. Bacteria) → it will be recognized by CD4 helper T-cells which will mediate the production of immunoglobulins (by converting B-lymphocytes to plasma cells) and they will stimulate CD8 cells by secreting IL-2.

- **CD4 cell interaction with APC:**
 - TCR presented on CD4 cells will interact with MHC class-II molecule presented on APC.
 - LFA-1 presented on CD4 cells will interact with ICAM-1 presented on APC.
 - CD28 presented on CD4 cells will interact with B7 presented on APC.
 - CD40L presented on CD4 cells will interact with CD40 presented on APC.

- **Activation of CD8 cytotoxic T-cells:**
 - APC has the antigen presented on MHC class-I which will be recognized by CD8 cells (they are activated). In addition, the APC has the antigen also presented on MHC class-II which will be recognized by CD4 cells (they are activated). CD4 cells will provide the second signal of activation of CD8 cells (by producing IL-2).
- **Activation of B-lymphocytes:**
 - Antigens will be presented on MHC class-II molecules carried on APC → CD4 cells will activate the B-lymphocytes and stimulate their conversion to plasma cells so they can secrete immunoglobulins.

HIV INFECTION EFFECTS ON THE IMMUNE SYSTEM

- **Life cycle:**
 - The gp120 which is present on the envelope of HIV virus will attach to CD4 receptors present on the host cell.
 - Then, gp120 will interact with chemokine receptors (CCR5 or CXCR4).
 - Gp41 which is embedded in the envelope of the virus will mediate the fusion of the virus with the host cell.
 - After fusion occurs, the virus will release nucleocapsid, RNA genome & reverse transcriptase, integrase and protease in the cytoplasm of the host cell.
 - The enzyme reverse transcriptase will use the RNA genome of the virus to synthesize a DNA copy from it and an RNA-DNA complex will be formed.
 - Then, reverse transcriptase will have a ribonuclease H activity and it will remove the RNA strand from the RNA-DNA complex so double-stranded DNA genome can be synthesized.
 - The double-stranded DNA will move to the nucleus of the host cell to be integrated with the host cell DNA and this will be mediated by integrase.
 - Replication will occur and RNA will be released from the nucleus to the cytoplasm. Protease will cleave polyproteins to polypeptides and assembly them in the new viral particles.
 - Viral particles will be released from the host cell.

- **Chemokines & chemokine receptors:**
 - Chemokines are cytokines that chemoattract and activate leukocytes.
 - Their receptors belong to G-protein-coupled receptors.
 - Since the entry of HIV into host cells requires chemokine receptors, chemokine antagonists are being developed to treat AIDS.

- **Comparison between CCR5 & CXCR4 chemokine receptors:**

<table>
<thead>
<tr>
<th>CCR5</th>
<th>CXCR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>β chemokine receptor, (MIP-1α, MIP-1β, RANTES)</td>
<td>also known as “fusin”</td>
</tr>
<tr>
<td>associated with primary and early infection</td>
<td>α chemokine receptor,</td>
</tr>
<tr>
<td>expressed on macrophages and T cells</td>
<td>natural ligand is SDF-1</td>
</tr>
<tr>
<td></td>
<td>expressed on T cells and T cell lines</td>
</tr>
</tbody>
</table>

- Early in the infection, macrophage-tropic strains of the virus will predominate using CCR5, but later it will be switched to T-tropic strains which will utilize CXCR4 and there will be no involvement of macrophages.

- In HIV infection →CD4 helper T-cells will be infected leading to their loss (no cell-mediated immunity) → in addition, cytotoxic T-cells will lose their function due to the reduction in CD4 cells (which normally activate them by producing IL-2) → all of this will lead to the progression of the disease.

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>AIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total lymphs</td>
<td>>1000</td>
<td><600 to 0</td>
</tr>
<tr>
<td>Total T cells</td>
<td>>60%</td>
<td><30%</td>
</tr>
<tr>
<td>Absolute CD4</td>
<td>>600</td>
<td><200</td>
</tr>
<tr>
<td>CD4/CD8 ratio</td>
<td>>1.7</td>
<td><1</td>
</tr>
</tbody>
</table>
- **Destruction of CD4 cells:**
 - Lysis of cell caused by budding of virus.
 - Cytopathic effect of unintegrated viral RNA,DNA.
 - Apoptosis mediated by gp120 env.
 - Cytotoxic T-cell killing of infected cells.
 - ADCC-mediated cell lysis by NK cells.
 - **Note:** there might be impaired production of CD4 cells by thymic dysfunction or bone marrow suppression.

- **Effect of CD4 cell cytokine dysregulation:**
 - Lack of T-cell (help) for B-cell antibody responses (TH2 cytokines):
 - Poor response to new antigens.
 - Loss of CD4 memory responses.
 - Lack of TH1 cytokine (help) to augment and sustain CTL both to HIV and other antigens.
 - Decrease in cytokine and chemokines which have direct antiviral effects.

- **HIV and lymphoid organs:**
 - HIV sticks to (Denditic Cell sign) on dendritic cells and is transported to lymph nodes.
 - Regional lymph node is the site of initial replication and expansion of HIV (act as reservoir of virus).
 - Early in infection, lymph nodes act as a trap of HIV (follicular dendritic cell network).
 - Later in infections as FDC network fails, ↑viremia.